Drosophila LKB1 is required for the assembly of the polarized actin structure that allows spermatid individualization
نویسندگان
چکیده
In mammals, a testis-specific isoform of the protein kinase LKB1 is required for spermiogenesis, but its exact function and specificity are not known. Human LKB1 rescues the functions of Drosophila Lkb1 essential for viability, but these males are sterile, revealing a new function for this genes in fly. We also identified a testis-specific transcript generated by an alternative promoter and that only differs by a longer 5'UTR. We show that dLKB1 is required in the germline for the formation of the actin cone, the polarized structure that allows spermatid individualization and cytoplasm excess extrusion during spermiogenesis. Three of the nine LKB1 classical targets in the Drosophila genome (AMPK, NUAK and KP78b) are required for proper spermiogenesis, but later than dLKB1. dLkb1 mutant phenotype is reminiscent of that of myosin V mutants, and both proteins show a dynamic localization profile before actin cone formation. Together, these data highlight a new dLKB1 function and suggest that dLKB1 posttranscriptional regulation in testis and involvement in spermatid morphogenesis are evolutionarily conserved features.
منابع مشابه
Dynein light chain 1 regulates dynamin-mediated F-actin assembly during sperm individualization in Drosophila.
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we r...
متن کاملDynein Light Chain 1 Regulates Dynamin-mediated F-Actin Assembly during Sperm Individualization in Drosophila□D
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilamentrich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we re...
متن کاملProper cellular reorganization during Drosophila spermatid individualization depends on actin structures composed of two domains, bundles and meshwork, that are differentially regulated and have different functions.
During spermatid individualization in Drosophila, actin structures (cones) mediate cellular remodeling that separates the syncytial spermatids into individual cells. These actin cones are composed of two structural domains, a front meshwork and a rear region of parallel bundles. We show here that the two domains form separately in time, are regulated by different sets of actin-associated protei...
متن کاملGenetic dissection of sperm individualization in Drosophila melanogaster.
The morphogenesis of spermatids generally takes place within a syncytium, in which all spermatid nuclei descended from a primary spermatocyte remain connected via an extensive network of cytoplasmic bridges. A late step in sperm maturation therefore requires the physical resolution of the syncytium, or cyst, into individual cells, a process sometimes referred to as sperm individualization. Desp...
متن کاملCoiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster.
Myosin VI is a pointed-end-directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-...
متن کامل